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Note 

On Operator Splitting for Unsteady 
Boundary Value Problems 

INTRODUCTION 

In this article we consider the initial value problem 

EQ!+E+H; 
at ax ay 

t > 0, -aI<x, J’<cG, 

Here U, F, G, H are m x I vectors, and 

We shall assume that ~4~ belongs to the class of functions, D, which are sufficiently 
smooth that (i))(2) has a unique, strong solution 24(x, y, tj: which for 0 5 t 5 T is in 
the class Cf+ ’ of functions possessing continuous partial derivatives D’u of order 
through p + 1, for some p 2 2. 

In [ 11, MacCormack uses a frozen Jacobian (locally linearized) analysis and a 
gain matrix approach to argue that a certain operator splitting of the two-dimen- 
sional, conservation form, NavierStokes equations (which have the form of 
Eq. (1)) is second-order accurate. Here we establish that MacCormacks intuitive 
result, which through the above approach can rigorously be shown valid only for 
linear systems, is also true in the presence of nonlinearity. Additional second-order 
splittings are obtained, for the case in which derivative-free source terms are present 
in the fluid dynamics equations. Some discussion of operator optimality is given. 
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EVOLUTION OPERATOR 

Under the above assumptions, there exists an operator [2] 17 = ,F(r, !) with the 
property that 

where U” = z~(x, y3 tj, U”+ ’ = L~(.x, y, t + r). Although the applications normally call 
for discrete values on a space lattice, for convenience of analysis we prefer -XT? y in 
(4) to be variable. 

APPROXIMATE FACTORIZATION 

A major problem of modern numerical analysis is the discovery of operator 
products 

which to pth order accuracy approximate the operator of Eq. (4j; i.e.> 

Here, we shall be concerned with the case p = 2. 

REGIMEN 

For economy of machine implementation the operators LT’ are to be the simplest 
possible. In practice they provide second-order accurate approximations to 
solutions of certain equations which are associated with Eq. (I ), through the 
natural splitting 

(6aj 
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The corresponding approximation operators for Eqs. (6) we denote by 

The method of operator splitting was originated by Peaceman and Rachford [3], 
in deriving a variant of the alternating direction (AD1 j method which lends itself to 
the use of cyclic acceleration parameters for accelerating convergence. In seeking 
numerical solutions of (1 j, the curse of dimensionality may be avoided through 
splittings such as provided by Eqs. (5b(7), often with improved time-step restric- 
tions. Moreover, advantage can be taken of the long and successful history of 
research results concerning eflicient numerical schemes for solving equations such 
as (6j. Particularly of note are the advantages of MacCormack’s method for the 
Navier-Stokes equations [l], and of certain higher order shock capturing schemes 
for the Euler equations [4, 51. 

The purpose of this note is to provide rigorous proof, in the general nonlinear 
case, of the second-order accuracy of a splitting considered in reference [ 11. There, 
MacCormack justilies second-order accuracy by means of a frozen Jacobian 
analysis and a gain matrix approach. Thus, his method rigorously establishes the 
result only in the case of a linear system. In addition we consider the problem of 
obtaining second-order splittings for systems characterized by presence of 
derivative-free source terms, as in axis-symmetric geometries. Some discussions of 
the optimality of the splitting approach is given. 

THREE FACTOR. SECOND-ORDER ACC~ATE SPLITTINGS 

In reference [6], Strang proves a result on operator splitting, which is somewhat 
more general, but whose content is essentially, the following: 

SPLITTING THEOREM I. 

Suppose operators Lz, L-z are kno~~w3 which provide, as in Eqs. (7a), (7b), second- 
order accurate updates for solutions of Eqs. (6a), (6b). Then, either of the corn- 
position operators defined bj 

and 
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provides a second-order accurate, three-factor splitting for the equation 

Conri?zenf 1. Using the methods of Strang [6], we can show that no two-factor 
sphtting which employs individually second-order accurate operators can, over one 
step, yield a second-order splitting for Eq. (9). Thus, among the class of operators 
which are second-order accurate over one step, Eqs, (ga), (Sb), are optimal? m 
terms of the number of operators applied. 

Comment 2. The results of Strang are general enough to encompass sphttmgs 
for equations such as 

where II% are derivatives of arbitrary order. The equation 

C=a+b 

signifies an arbitrary splitting, subject only to the restrictton that there exist 
operators L:, Lj, which provide second-order updates for the equations 

Some complications emerge when C is an explicit function of t; however, these shah 
not concern us, as we shall not require explicit time dependence of C. 

FOUR-FACTOR SECOND-ORDER ACCURATE SPLITTING 

Now, observe that if the operator sequence of (Sa). (8b) is applied twice six 
operator applications are necessary to advance a 2~ time increment. MacCormack 
[ 1] seems to have been tirst to note that a more economical second-order update- 
over time increment 2~, can be obtained. He considers cychcal applications of the 
operator sequence 

CF + 1 = (L;.L-;,L;,L;) V~ (i3j 

His justification of second-order accuracy we shah sketch, as follows: Consider a 
Fourier mode 
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By applying the operator sequence in (13) to the Fourier mode of (14), with frozen 
Jacobian matrices JF, JG, it emerges [ 1 ] that (13) produces a gain matrix 

&&&& (15) 

which differs only by third order terms from the exact gain matrix obtained when 
(14) is substituted in Eq. (9). Thus, (13) has been rigorously justified second-order 
accurate only for linear systems (9), with otherwise locally linearized second-order 
accuracy. 

However, by approximately factoring the full-step (middle) operators in (Sa), 
(Sb), we now show that MacCormack’s cyclically reversed sequence (13j is, in 
general, second-order accurate, subject only to the restrictions required for proving 
Strang’s splitting theorem. 

Suppose L’ is second-order accurate for the equation 

i3z 
z=g(x,y, D?). 

Then, to within terms of third order, it is required that 

where By are the Jacobian matrices of g with respect to the derivatives D’z. Thus, 

L’(L*z) = L’z + Tg(x, y, D’z + TD’g) +; 2 Bz. D*g + O( TV). (181 
x 

Expanding the second term in the right member, we see that 

Lr(LTz) = L’z + rg(.x, ~1, D?) + ;T’ 1 Bx. D’g + O(r3). (19) 
27 

This becomes, not surprisingly, 

LT(LTz) = L2Tz + cl(?). (20) 

Hence, by applying (20) to Strang’s results (8a), (8b), we see that MacCormack’s 
cyclically reversed sequence (13) is second order accurate, over time increment 2~, 
for general nonlinear systems of the form (9). 

SPLITTING IN THE PRESENCE OF SOURCE TERMS 

In recent research concerning second-order accurate shock-capturing algorithms 
for the Euler equations, interest is focused upon the problem of splitting Eq. (1) for 



T-7 
OPERATOR SPLITTING 4:: 

the case in which nonzero ZY(U, X, JJ) is present in (1). Carofano [‘7]? followmg 
MacCormacks [l] results for the two-dimensional case, intuitively employs the 
sphtting 

where L; is a second-order operator for Eq. (6~). We now discuss optimaiity for 
(21), and rigorously establish second-order accuracy. 

In view of Comments 1 and 2, it is unlikely that a three-factor product of 
individually second-order operators can be found, which over one step with time 
mcrement, T, provides a second-order update for (1 j. What can be done, rigorously, 
is to consider splittings which pair up any two of the quantities F, G, H against the 
other. Typically, the splitting 

aF aG 
a=~+&,~ b = H, C=a+b (22) 

together with results similar to Eq. (8) obtainable by applying Strang’s general 
result (Comment 2), establishes that 

u n+ I = [q2(Ly2pL3 q2] (-y’l (23aj 

and 

u u+ 1 = q2(qnL;,~2) L;‘=u (23b) 

both provide tive-factor, best possible in number, second-order accurate splittmgs, 
over one step of increment r, for the Eq. (1) with source terms present. Among 
other possibilities similarly obtained, the factorization 

shall be of particular interest. 
It is ciear that an approximate factorization of L; in (24) can be used to establish 

second-order accuracy for the Carofano splitting of Eq. (21), when r/2 is replaced 
by r. Hence, Eqs. (21) (23), (24) provide equivalent second-order accurate spht- 
tings of Eq. (1 j in the presence of source terms. Equation (24), applied over time 
increment 2r, should be most efficient, but at the expense of cyclically modifying the 
time-step. 

Comment 3. Our fmal comment is that, in terms of the optimal number of 
operators, Strang’s splitting of Eq. (8), over time increment 2~, is stil1 one operator 
evaluation more efftcient than is the MacCormack version of Eq. ( 13 j. However, in 
many cases stability restrictions or special problem idiosyncracies may mandate 
other priorities. 
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